

# Disturbance legacies, climate and biotic stressors help to explain widespread decline of *P. pinaster* in mixed forests in Central Spain

## The information in this presentation can be accessed at the following article: <u>https://doi.org/10.1016/j.scitotenv.2019.05.378</u>

Science of the Total Environment 685 (2019) 963-975





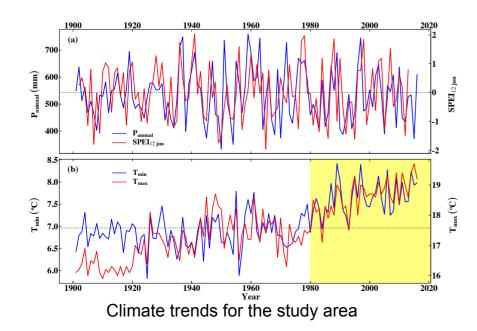
Synergistic abiotic and biotic stressors explain widespread decline of *Pinus pinaster* in a mixed forest\*



Guillermo Gea-Izquierdo <sup>a</sup>,\*, Macarena Férriz <sup>a</sup>, Sara García-Garrido <sup>a</sup>, Olga Aguín <sup>b</sup>, Margarita Elvira-Recuenco <sup>a</sup>, Laura Hernandez-Escribano <sup>a</sup>, Dario Martin-Benito <sup>a</sup>, Rosa Raposo <sup>a</sup>

<sup>a</sup> INIA-CIFOR, Ctra. La Coruña km. 7.5, 28040 Madrid, Spain

<sup>b</sup> Estación Fitopatolóxica do Areeiro, Subida a la Robleda s/n, 36153 Pontevedra, Spain


Land-use and climate legacies help to explain *P. pinaster* decline and mortality at its dry limit

#### Global change and forest dynamics :

- Climate change: warming, enhancement in overall water stress in the Mediterrranean.
- ♦ Land-use legacies: fire, management, resin tapping, grazing,...

#### Implications for species dynamics and sustainability:

- Species decline?
- Accelerated mortality? Baseline mortality part of healthy forests



Need to study interactions between biotic and abiotic factors and their relationship with physiological processes (C-starvation and hydraulic failure)

Transformed

landscapes:

palaecology,

socioeconomy

Where?

Why?

How?

#### ♦ But forest decline is not everywhere!

Where? Why? How? In the Central System at xeric sites, like low-altitudes and shallow soils a the species low elevation limit in SW Madrid (Study site). Disturbed forest ecosystems.

Implications for the resin business.... Which very much helps to explain the species distribution today.

#### **Objective**

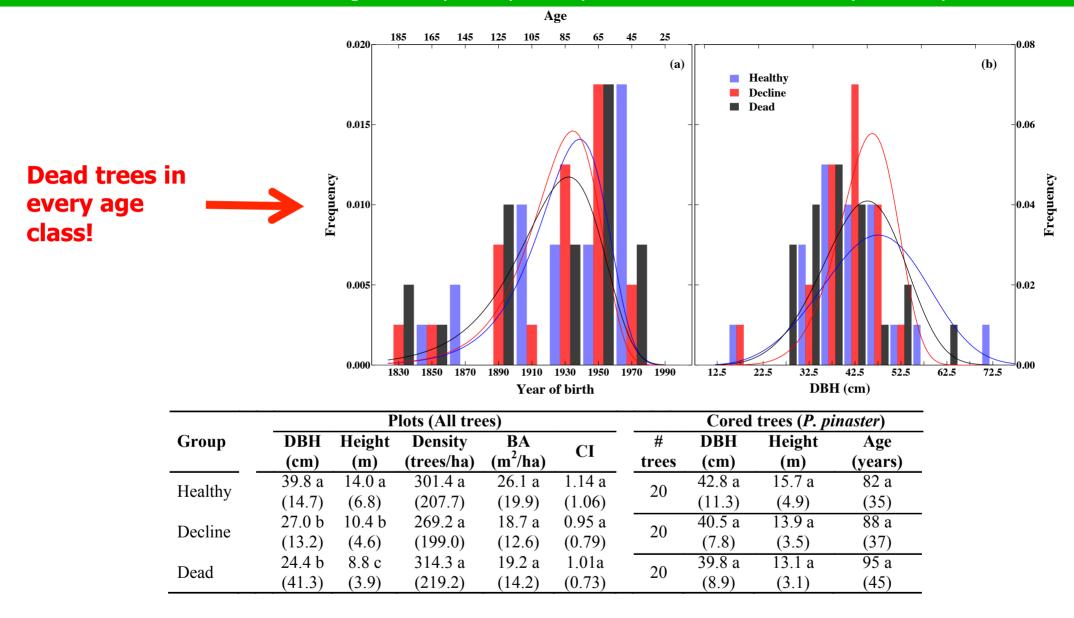
Characterize biotic and abiotic factors producing *P. Pinaster* decline in a mixed forest in Central Spain at its dry altitudinal limit (dry-edge, rear-edge) > 700 m asl. Submediterranean *P. pinaster* sspp. (Costa et al. 2005. Los Bosques Ibéricos)

#### **Study site**

- Mixed forest: dominant *P. pinaster*, *P. pinea*, *Q. ilex*, *J. oxycedrus* (more drought-tolerant)
- ♦ 518 mm annual precipitation 12.7°C mean temperature
- ♦ 45 plots (10-m radius) along altitudinal gradient, 790 -1200 m

Characterise **biotic and abiotic factors**, fungi, insects, growth:

- > Plot level, including regeneration
- > 60 target (cored) *P. pinaster*, 3 health classes

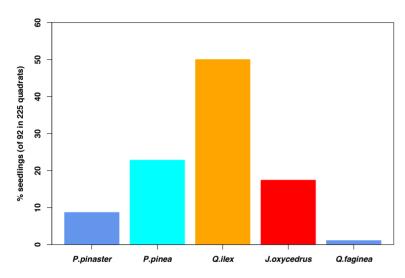

#### **Pine decline=canopy symptoms (0-4):**

- ♦ Defoliation levels
- ♦ Mistletoe infection
- But also growth decline and lack of regeneration (particularly if climate forcing)

*P. pinaster* decline in the area is not new, at least:

- Pine decline in forest managers reports since the late 1990s (earliest reports available)
- ♦ In ICP forest plots in the area

Land-use and climate legacies help to explain *P. pinaster* decline and mortality at its dry limit

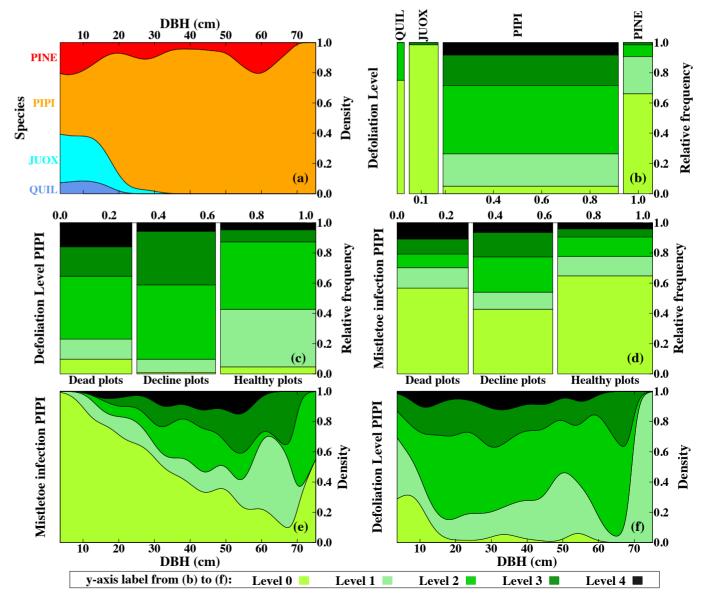



- Already a pine stand in the early 1800s, in 1855 pinea forest (from Madoz, L. Gil com. Pers); resin business blooming since the1850s: 1871, resin plant in Navas del Marqués by Duchess of Medinaceli (Hernández 2006). Most likely resin extraction for more than 100 years in the area until the 1970s.
- Our maximum age pinaster and pinea 200 years: the two species were already 200 years ago.

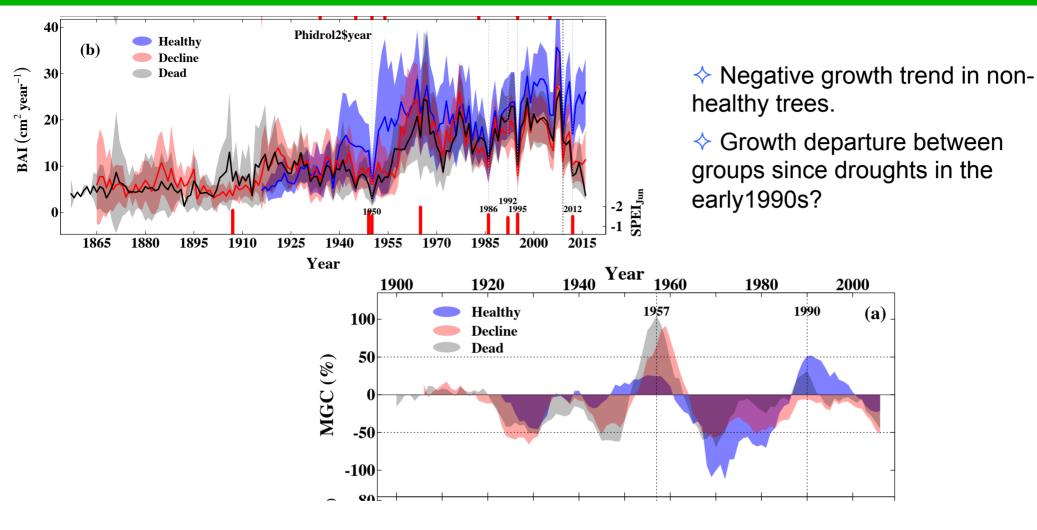
#### Land-use and climate legacies help to explain *P. pinaster* decline and mortality at its dry limit

Decline/health classification: medians are shown, whereas minimum and maximum values are between parentheses.

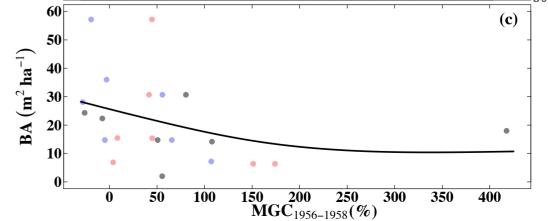
|         | Health classification    |                              |
|---------|--------------------------|------------------------------|
| Groups  | <b>Defoliation (0-4)</b> | Mistletoe infection<br>(0-4) |
| Healthy | 1 (0-2)                  | 0 (0-2)                      |
| Decline | 3 (2-3)                  | 3 (2-4)                      |
| Dead    | 4                        | 3 (0-4)                      |

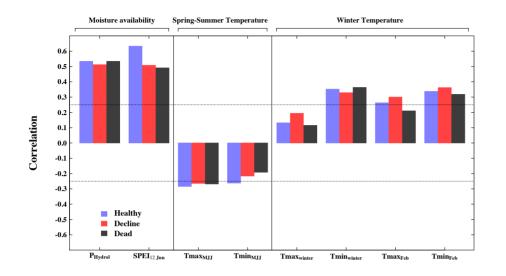



## Regeneration (pinaster dominant canopy sp.)


- Only 1.4% of 225, 1 m<sup>2</sup>
  quadrats with saplings.
- 22.5% of quadrats with some seedling.

- Only *P. pinaster* decline symptoms.
- Regeneration and lower diameter classes: more abundant drought-tolerant species.


♦ Abundant canopy decline at the plot level.




Land-use and climate legacies help to explain *P. pinaster* decline and mortality at its dry limit



- Declining and dead trees identical growth trends: future mortality of abundant declining trees? Similar in *P. sylvestris* close forests (Gea-Izquierdo et al. 2014).
- Open stands: drought-related mortality after 1950 (and also 1995)? Fire? Slow recovery dynamics.





#### Classic Mediterranean growth response to climate

## But what about biotic factors?

- Overall 53 fungi detected, few pathogens (leaves, collar root and bole, soil).
- Low levels of infection found: no Heterobasidion, no Phytophthora, some Armillaria mellea (9.5% of soil samples).
- No systematic infection of any fungi or insect (bark, wood-boring, leave defoliators).
- $\diamond$  No pine nematode reported in the studied area.

- Factors causing pine decline at the species dry-edge: pathogens like *A. mellea* could be contributing factors, but abiotic factors dominant; particularly water stress related factors (including mistletoes, climate) and land-use legacies as predisposing (long-term) and inciting factors (short-term).
- What about land-use legacies? Great consequences for species dynamics today, including decline. We have much to learn, including implications of historical forest use on current (and future) species dynamics.
- Must take into acount all these factors in mortality models (hence in management), and learn how they interact to actually produce mortality (physiology of tree decline).
- In the literature other similar examples (e.g. next speaker. from the Northern Plateau)... so decline is not ubiquitous but neither just a local phenomenon, and the species (likewise others) is likely in decline in the most xeric sites, where (if) more drought-tolerant (or disturbance-tolerant) species are already substituting them. Consequences for future management of forests? Need monitoring.